Le temps va alors exercer une puissance influence sur l’imagination de Le Clézio. Son omniprésence annonce qu’il occupe une place essentielle dans l’œuvre de Le Clézio. Nous voulons préparer une étude des figures du temps chez Le Clézio.
Dans cette partie, comme l’instrument de recherche, nous voulons présenter la méthode critique de Gilbert Durand. Cependant, il faut signaler que notre travail n’envisage pas une étude totale du système durandien. Elle est une petite introduction à une grande recherche appliquant cette méthode. Notre étude, fondée sur la notion de la critique, n’est qu’un travail élémentaire pour la compréhension d’une pensée.
La base et le principe de la pensée durandienne sont profondément liés aux théories de l’épistémologue et critique Gaston Bachelard.
[۱] ABBASSI, Ali, La Peur du Temps chez Hugo, Université SHAHID BEHESHTI, 2004, p. 2.
Le dernier insiste sur le rôle important de la rêverie et de l’imagination dans la création des œuvres littéraires. En effet, Bachelard et Durand ont toujours eu un regard particulier sur l’image. D’après eux, les images poétiques ont un système qui est définit par l’imaginaire. Ce dernier se base sur les images originelles sans lesquelles les manifestations de la vie et des valeurs vitales seraient impossible. Ces images sont celles qui sont inspirées par les matières fondamentales, par les mouvements principaux, comme monter et descendre, et par les quatre éléments fondamentaux : feu, eau, terre, air.
Dans son ouvrage : Les Structures anthropologiques de l’imaginaire. Introduction à l’archétypologie générale, paru pour la première fois en 1960, Gilbert Durand présente sa démarche. L’ouvrage a pour objet de définir le sémantisme primitif des images et d’établir une ” classification des grands symboles de l’imagination “. Il établit que les produits de l’imagination ont une signification intrinsèque, qui détermine notre représentation du monde. Il définit l’imagination comme « la racine de toute pensée. »۱
[۱] CHELEBOURG, Christian, L’imaginaire littéraire, Des archétypes à la poétique du sujet, Paris, Nathan, 2000, p. 57.
Les réalités géographiques et cosmiques, les structures sociales, la conscience de la fécondité féminine, de la force virile, toutes ces données objectives de la perception se mêlent à nos pulsions profondes pour constituer notre représentation du monde. Entre ces deux dimensions de la réalité, l’une objective, l’autre subjective, l’imagination opère un perpétuel va-et-vient, un échange constant, auquel Gilbert Durand donne le nom de “trajet anthropologique.” Ce trajet définit l’imaginaire :
« Finalement, l’imaginaire n’est rien d’autre que ce trajet dans lequel la représentation de l’objet se laisse assimiler et modeler par les impératifs pulsionnels du sujet, et dans lequel réciproquement, comme l’a magistralement montré Piaget, les représentations subjectives s’expliquent « par les accommodations antérieures du sujet » au milieu objectif.»۱
D’après Durand, toutes pensée repose sur des images, qui n’ont rien à voir ni avec la mémoire, ni aves la perception.
۱ DURAND, Gilbert, Les Structures anthropologiques de l’imaginaire, Introduction à l’archétypologie générale, Paris, Dunod, 1992, p.38.
En effet, la conception de l’anthropologie de l’imaginaire que Gilbert Durand a construit s’est fait sur cette constatation qu’à l’origine de toute culture, il y a une peur essentielle qui est la peur de la fuite du temps. Ce que Durand appelle le Chronos dévorant, que toutes les productions, pratiquement imaginaires et intellectuelles peuvent relever des réponses à cette fuite du temps.
En réalité, le principe classification de Durand est la bipartition des symboles entre deux grands régimes : “diurne et nocturne”. Ces régimes représentent deux manières de lutter contre le temps et l’angoisse de mort. Fondamentalement antithétique, le régime diurne oppose deux grandes catégories d’images, les unes qui signifient l’angoisse devant le temps, les autres la volonté de vaincre celle-ci et de s’élever au-dessus de la condition humaine. Parmi les premières, on distingue trois types de symboles représentant les visages du temps. D’abord des symboles thériomorphes, des images animales qui signifient soit l’agitation et le changement, soit l’agressivité et la cruauté. Ensuite viennent des symboles nyctomorphes, des images de la nuit qui transposent en terme d’obscurité la craint engendrée par le temps. Il groupe les images de l’impureté, de l’eau noire, mais aussi celle de l’aveuglement. Enfin, des symboles catamorphes, des images de la chute, mais aussi des images du sang, du vertige, de la pesanteur ou de l’écrasement. Ces symboles disent la déchéance de l’homme, chassé du paradis et devenu mortel.
À toutes ces images des temps, valorisés négativement, s’oppose le symbolisme symétrique de la victoire sur le destin et sur la mort. Il constitue le deuxième type d’images du régime diurne. À l’intérieure de celui-ci, Gilbert Durand distingue de nouveau trois catégories de symboles. En premier lieu, des symboles ascensionnels, par lesquels l’homme atteint à une souveraineté céleste, on trouve ici les images de l’élévation, de l’aile, de l’ange, du géant. Puis, des symboles spectaculaires, ils groupent les symboles de la lumière et les organes de la lumière : le soleil, l’œil, le verbe divin. Pour finir, des symboles diaïrétique, symboles de la puissance et de pureté qui se composent des armes et des insignes de la victoire, de l’accession à la transcendance : flèche, glaive, etc.
Les structures mystiques et synthétiques constituent le régime nocturne. Le premier cherche à nier le temps sur le mode de l’antiphrase, et le deuxième à s’en accommoder, à tirer parti de sa nature cyclique.
Dans les structures mystiques les symboles ne font plus vivre le monde en termes de conflit, comme dans l’antithèse, mais visent, au contraire, à réduire ses dangers, à les euphémiser au point de les nier, de les inverser, comme par antiphrase. Ils se répartissent en deux groupes : un groupe d’images de l’inversion et un groupe d’images de l’intimité. Ces structures de mystiques conjuguent une volonté d’union avec le monde et le goût de l’intimité secrète. Elles reçoivent également l’épithète d’antiphrasiques, pour souligner que leur fonctionnement générale est celui de l’antiphrase.
Dans les structures synthétiques ou (dramatiques) les symboles sont tous cycliques, ils sont animés par le désire de maîtriser le temps en utilisant ses rythmes propres. Pour y parvenir, ils s’orientent soit dans le sens de l’eternel retour, soit dans celui du progrès. Les cycles de l’éternel retour
comportent une phase négative et une phase positive, la première étant interprétée comme nécessaire à l’avènement de la seconde, ce qui en euphémise la négativité. Dans les symboles progressistes, le dernier cycle « n’est qu’un cycle tronqué ou mieux une phase cyclique ultime emboîtant tous les autres cycles comme figures et ébauches de l’ultime procès. »۱ Les symboles cycliques se présentent sous la forme de récits dramatiques, de mythes opérant la synthèse, la réconciliation si l’on préfère, d’images qui s’opposent dans les autres structures de l’imaginaire. Les modèles naturels de ces cycles sont les phrases de la lune et le cycle végétal des saisons.
Puisqu’ un travail constituant tous les deux régimes deviendra trop long pour un mémoire de maîtrise, notre travail se contente d’étudier les images du régime diurne de l’imaginaire.[۱] Ibid., p. 322.
Temps est un thème fréquent chez Le Clézio, Pour étudier ce concept chez Le Clézio, nous essaierons de voir, d’une part, si il prouve une certaine peur face à la fuite du temps ? Si oui, pourquoi ? D’une autre part, est- ce qu’il pourrait maîtriser la fuite du temps ? Si oui, comment ?
En tant que corpus, face à une immense production littéraire, il est à signaler que nous avons étudié une petite partie de l’œuvre romanesque de Le
مطلب دیگر :
Clézio pour analyser des figures de l’imaginaire. Nous avons travaillé sur les ouvrages : La Ritournelle de la faim, Désert et L’Africain.
Ce travail comprend deux parties. Dans la première partie nous allons étudier les images négatives du régime diurne regroupées autour des symboles thériomorphes, nyctomorphes et enfin catamorphes. Et dans la partie suivante, nous allons voir si Le Clézio pourrait enfin montrer une victoire face à l’écoulement du temps. La réponse à cette question sera une analyse des images positives du régime diurne regroupées autour des symboles ascensionnels, spectaculaires et enfin les symboles de protection contre le temps.
Table 4. 4: Gelling temperatures (TGEL) and melting temperatures (TM) of κ-carrageenan alone and the mixture HHSS12-κ-carrageenan determined from cooling and heating ramps at 1 °C/min and 1 rad/s. 104
Table 4.5: Storage and loss moduli G’ and G” of κ-carrageenan alone and HHSS12-κC0.5 mixture determined from temperature ramps during cooling and heating at 1 °C/min by rheological measurements. Frequency: 1 rad/s. 111
Figure 1.1: Research flowchart 7
Figure 2. 1: Formation of hard gelatin capsules by dip molding. 12
Figure 2. 2: Position fingers dipping during passage through the drying ovens. 13
Figure 2. 3: Steps removing (a) trimming (b), and assembly of capsules (c). 14
Figure 2. 4: Water content at equilibrium of pharmaceutical hard empty gelatin capsules in relationship with the mechanical behavior. The capsules are stored at different relative humidities for two weeks at 20 ° C. 16
Figure 2. 5: Isothermal sorption-desorption capsules hard gelatin and HPMC at equilibrium at 25°C. 19
Figure 2. 6: Test for fragility of the capsules: the percentage of broken capsules according to their water content. a: resistance to pressure with capsules filled with corn starch. b: impact resistance with empty capsules. 19
Figure 2. 7: Structure of amylose. 22
Figure 2. 8: Structure of amylopectin. 23
Figure 2. 9: Grains of different starches observed in scanning electron microscopy SEM (magnification × ۲۸۰) ۲۴
Figure 2. 10: The different levels of grain starch. 25
Figure 2. 11: Organization of starch grains in “blocklets”. 27
Figure 2. 12: X-ray diffraction diagram for crystalline starch type A, B and C. 28
Figure 2. 13: Crystallinity of potato starch: influence of water content on the resolution of the diffraction pattern of X-rays. 29
Figure 2. 14: Crystalline arrangement of double helices of amylose type A and B 30
Figure 2. 15: Variation of classical transitions of the potato starch as a function of water content 33
Figure 2. 16: Hydroxypropylation reaction. 38
Figure 2. 17: Mass balance of cassava starch manufacturing process in a starch factory with a decanter. 47
Figure 2. 18: Mass balance of cassava starch manufacturing process in a starch factory without a decanter. 48
Figure 2. 19: Starch granules trapped in discharged pulp of cassava starch process. 49
Figure 2. 17: Ideal repeating units of λ-carrageenan (a) (R = H or SO3–), and (b) for ι- carrageenan (R1 = R2 = SO3–) and κ- carrageenan (R1 = H ; R2 = SO3–). 54
Figure 2. 18: Percentage of order of κ-carrageenan solution by polarimetry (0) and conductivity measurements (D) 55
Figure 2. 19: Change in transition temperature Tm at cooling κ-carrageenan based on the total concentration of CT different monovalent cations (1) Rb+, (2) Cs+, (3) K+ ,(4) NH4+, (7) N(CH3)4+ (8) Na+, (9) Li+ and divalent cations (5-6) Ba2+, Ca2+, Sr2+, Mg2+, Zn2+, Co2+. 57
Figure 2. 20: Phase diagram of κ-carrageenan representing the variation of transition temperature on cooling and heating according to the total concentration of potassium (Rochas, 1982; Rochas & Rinaudo, 1980). 59
Figure 2. 21: κ -Carrageenan gelation model, cation to promote gelation. (Morris et al., 1980) 60
Figure 2. 22: Variations of G’ and G” as a function of temperature for a concentration of 1% κ-carrageenan, Frequency 1 Hz, Tg: temperature of gelation, Tm: melting temperature. Cooling G’ (■), G” (¨). Heating G’ (□), G” (◊). (Fernandes, Gonçalves & Doublier, 1992). 63
Figure 2. 23: Kinetics of evolution of κ-carrageenan at a concentration of 1%. Temperature is 25 ° C. Frequency 1Hz. G’ (■), G” (¨). ۶۴
Figure 2. 24: Phase diagram at 25 °C mixture of waxy hydroxypropyl starch/κ-carrageenan. 67
Figure 3.1: Phase diagram of κ-carrageenan representing the variation of transition temperature on cooling and heating according to the total concentration of potassium 75
Figure 4.1: Newtonian behavior of gelatin at 50 °C and 20% concentration. 80
Figure 4.2: Mechanical spectrum of 25% gelatin solution. G’: filled symbols, G”: empty symbols. Experiments were performed at 50 °C, strain amplitude was 1% 82
Figure 4.3: Storage and loss moduli G¢, G² for a 25% gelatin sample during a cooling ramp. Temperature was ramped from 50 to 20 °C at 1°C/min. Frequency: 1 rad/s. Strain amplitude: 1% 84
Figure 4.4: Storage and loss moduli G¢, G² as a function of temperature during a heating ramp of a 25% gelatin sample. Temperature was ramped from 25 °C to 50 °C at 1 °C/min. Frequency: 1 rad/s. Strain amplitude: 1% 85
Figure 4.5: Mechanical spectrum of 25% gelatin. G’: filled symbols, G”: empty symbols. The temperature was 20 °C. Strain amplitude: 1%. 87
Figure 4.6: Changes in modulus G’ and G” as a function of time for a 27% gelatin gel. Measurement temperature was 20 ° C. Frequency: 1 rad / s. Strain amplitude: 1%. 88
Figure 4.7: Changes in G’ as function of gelatin concentration. Data obtained after 6 h of time sweep measurement at 20 °C. Frequency: 1 rad/s. Strain amplitude: 1%. 89
Figure 4.8: Flow curves of hydrolyzed hydroxypropylated cassava starch dispersions at a concentration of 25% (g/g): HHSS6 (●), HHSS12 (■), HHSS18 (o), HHSS24 (). Measurements were performed at 50 °C 91
Figure 4.9: Flow curves for dually modified cassava starch (HHSS12) dispersions at a concentration of 25% (g/g). Measurement was performed at 50 °C 92
Figure 4.10: Flow curves of dispersions of hydroxypropyl cassava starch HHSS12 at concentrations of 20% (■), ۲۳% (●) and 25% (▲). Temperature was 50°C 93
Figure 4.11: Mechanical spectra of different dually modified cassava starches at concentrations of 25%: a) HHSS6, b) HHSS12, c) HHSS18, d) HHSS24. G’: filled symbols, G”: empty symbols. Measurement temperature was 50 °C and strain amplitude was 1% 94
Figure 4.12: Newtonian behavior of κ-carrageenan in the concentration range of 0.25% to 1% at 50 °C ۹۶
Figure 4.13: Flow curves of the mixture HHSS12-κC0.5 (¨), ۲۰%HHSS12 and 0.5% κ-carrageenan, κC0, 5 (×), and starch dispersions HHSS12 20% (□), ۲۳% (○) and 25% (Δ). The temperature was 50 °C ۹۷
Figure 4. 14: Flow curve of the HHSS12-κC0.5. Shear rate up 0 to 100 s-1 empty symbols, and down 100 to 0 s-1 filled symbols. 98
Figure 4.15: Flow curves of mixtures of 25% starch HHSS12 with κ-carrageenan at different concentrations. Measurements were taken at 50 °C 99
Figure 4.16: Flow curves for 0.5% κ-carrageenan and mixtures of 25% dually modified cassava starches/κC0.5. Measurement temperature was 50 °C. 100
Figure 4.17: Mechanical spectrum of κC0.5 (solid lines ■, □), HHSS12 (solid lines ●, ○), and the mixture κC0.5-HHSS12 (■, □). Concentration of HHSS12 alone was 25% and in combination total concentration was 25%. G’: filled symbols, G”: empty symbols. Measurement temperature: 50 ° C. Strain amplitude: 1% 101
Figure 4.18: Variation of viscoelastic modulus G’ and G” as a function of temperature for κC0.5 and for the mixture of κC0.5 and HHSS12. a) Cooling from 50 °C to 20 °C. b) Heating from 20 °C to 50 °C. Heating/cooling rate: 1 °C/min. Frequency: 1 rad/s. Strain amplitude: 1% 103
Figure 4.19: Variations of modulus G’ and G” as a function of temperature during cooling from 50 °C to 20 °C for 25% HHSS24 alone and in combination with κ-carrageenan. G”: filled symbols; G’: empty symbols. Cooling rate: 1 °C/min. Frequency: 1 rad/s. Strain amplitude: 1% 105
Figure 4.20: Variations of modulus G’ and G” as a function of temperature during cooling from 50 °C to 20 °C for 1% κ-carrageenan and 25% starch mixtures. G’: empty symbols; G”: filled symbols. Cooling rate: 1 °C/min. Frequency: 1 rad/s. Strain amplitude: 1% 106
Figure 4.21: Variations of modulus G’ and G” as a function of temperature during heating from 20 °C to 60 °C for 1% κ-carrageenan and 25% starch mixtures. G’: empty symbols; G”: filled symbols. Cooling rate: 1 °C/min. Frequency: 1 rad/s. Strain amplitude: 1% 107
Figure 4.22: Mechanical spectra of κC1 (■, □), κC0.75 (●, ○) and κC0.5 (▲, Δ). G’: filled symbols, G”: empty symbols. Temperature: 20 ° C. Strain amplitude: 1%. 108
Figure 4. 23: Mechanical spectrum of κC0.5 (●, ○), ۲۵% HHSS12 (dashed line with ▲, Δ) and the mixture of κC0.5-HHSS12 (■, □) at 20°C. G’: filled symbols, G”: empty symbols. Strain amplitude: 0.1% for mixtures and 1% for constituents. 109
Figure 4.24: Mechanical spectrum of mixtures HHSS12-κC1(▲, Δ), HHSS12-κC0.5 (dashed line with ●, ○) and HHSS12-κC0.25 (■, □) at 20 °C. G’: filled symbols, G”: empty symbols. Strain amplitude: 0.1% ۱۱۰
With the goal of finding an alternative to gelatin in the processing of pharmaceutical capsules, the effects of k-carrageenans on dually modified cassava starch were investigated. While film forming and mechanical properties are important in all pharmaceutical capsules, solubility at high solid concentration and thermo-reversibility are important factors for hard capsule processing. Casava starches were modified first by hydrochloric acid (0.14 N for 6, 12, 18, and 24 h at 50 °C) and secondly by propylene oxide (10, 20, and 30% of solid for 24 h at 40°C).
To improve the gel setting property of the dually modified starch, dually modified cassava starches were combined with k-carrageenan (0.25, 0.5, 0.75, and, 1%). The concentration of the K+ ion in the composite mixture was adjusted appropriately to achieve the same sol-gel transition temperature. The rheological properties of the mixtures were measured and compared, with gelatin as the reference material. The solution viscosity, sol-gel transition,
and mechanical properties of the films made from the mixtures at 50 °C were comparable to those of gelatin. The viscoelastic moduli (G’ and G”) for the gel mixtures were lower than those of gelatin. The composite gels had temperatures of gelation similar to that of gelatin. Both viscosity in solution and stiffness in gels could be adjusted using high levels of κ-carrageenan and was relatively independent of the molecular weight of the starch. These results illustrate that dually modified cassava starch in combination with k-carrageenan has properties similar to those of gelatin, thus these starches can be used in dip-molding processes, such as those used to make pharmaceutical hard capsules.
The capsule is one of the formulations of the oldest pharmaceutical in history, known especially from the ancient Egyptians. In Europe, it was not until
مطلب دیگر :
the nineteenth century that the first gelatin pharmaceutical capsule with the patent of Mr. Dublanc pharmacist and his student Mr. Mothes. Over the years, this invention has been so successful that the production of capsules has grown rapidly in many countries. This has led to many improvements including the invention of hard gelatin capsules in 1846 by Mr. Lehuby (Podczeck & Jones, 2004).
The development of pharmaceutical capsules, used for therapeutic purposes, originates in the keen interest shown by the numerous researches in pharmacology. This has greatly expanded the range of possible formulations using pharmaceutical capsules. Today, pharmaceutical capsules are mainly based on animal gelatin from porcine or bovine. Gelatin is an animal protein that is a traditional ingredient in many fields, including food. Gelation properties at temperatures close to room temperature and formation of homogeneous films, potable, gelatin as a choice for the manufacturing of pharmaceutical capsules.Table Page
۴.۱ Statistics for the OPT Scores.69
۴.۲ Reliability statistics of the questionnaire (pilot study).70
۴.۳ Item statistics for the listening comprehension strategy use questionnaire (metacognitive strategies).71
۴.۴ Descriptive statistics for the listening comprehension strategy use questionnaire (metacognitive strategies).72
۴.۵ Item statistics for the listening comprehension strategy use questionnaire (cognitive strategies).73
۴.۶ Descriptive statistics for the listening comprehension strategy use questionnaire (cognitive strategies).74
۴.۷ Descriptive statistics for the listening comprehension strategy use questionnaire (socio affective strategies)75
۴.۸ Descriptive statistics for the listening comprehension strategy use questionnaire (socio- affective strategies).75
۴.۹ Statistics for different categories of the questionnaire76
۴.۱۰ Ranks of female and male participants on listening comprehension strategy use.78
۴.۱۱ Median value of each group (listening comprehension strategy -use questionnaire).78
۴.۱۲ Mann-Whitney U Test for the listening comprehension strategy-use of males and females78
۴.۱۳ Ranks for females and males in metacognitive strategies.80
۴.۱۴ Ranks for females and males in cognitive strategies.81
۴.۱۵ Ranks for females and males in socio- affective strategies.82
List of Figures
مطلب دیگر :
پخش مستقیم بدلکاری با خطر مرگ در ۲۰۰ شبکه / عکس
Table Page
Abstract
The main goal of this investigation was to identify the listening strategies of Iranian male and female foreign (English) language learners and to compare the listening strategies of both groups of research participants. To investigate, 76 undergraduate students of different major of English were selected via administrating the Oxford Placement Test (OPT).Then, they were divided into two groups of 38asked to complete Cheng’ s (2002) 30-item Listening Strategyin the Likert-scale format to identify the listening strategies they use. Then the data gathered were run through statistical tests, including descriptive test and Mann Whitney U-test. Based on the findings of the studythe listeners usedmore metacognitive strategies than cognitive and socio-affective strategies respectively.In addition, as gender influenced selecting the types of strategies for listening, it can be efficient for policy makers, syllabus designers, practitioners and instructors especially in Iran where classrooms are separated according to students’gender.
Key words:Listening Strategies, Metacognitive Strategies, Cognitive Strategies, Socio-affective Strategies
Chapter One
Introduction
۱.۰. Introduction
Listening has become an important part of manysecond or foreign language (L2)programs,as both it is a means to access various sources of knowledge and it is a criterion to determine whether an EFL learner is a competent language performancer or not. Teachers can help students improve their listening competence by equipping them with effective listening strategies and skills.In fact,its importance is influenced by the overwhelming amount of listening input in everyday life.
After the surgery, Case and Molly live and work with each other. Whenever Molly goes to a place for work, Case controls the situation by jacking in
cyberspace and connecting to her sensorium. He can see through her eyes and feel her feelings and sensations. Up to the middle of the story, they do not really know whom they are working for. Indeed, they are working for Wintermute, an Artificial Intelligence (AI) that persuades Case to help
مطلب دیگر :
کشف جرم:/پایان نامه درباره کودک آزاری
Wintermute to unite with another AI, Neuromancer, in order to increase their power. Meanwhile, Case searches about AIs, Tessier-Ashpool, and their daughter, Lady 3Jane through jacking in cyberspace and talking to Dixie-Flatline (a memory construct). Then, Molly is sent to Villa Straylight where she meets Lady 3Jane and her assistant, Peter Riveria. Molly gets hurt there. When Case sees Molly in danger, he jacks out cyberspace and goes to Villa Straylight in order to save her and complete the run. After their mission, Case goes to Chiba City and buys new parts of body, such as a pancreas and a liver. Then, he goes back to the Sprawl, and finds a job and a girlfriend. He continues his normal life in society and never sees Molly again.
Count Zero (1986), is divided into three stories which are connected to each other. One story focuses on Turner who had been survived from an accident by a Dutch surgeon. The Dutch surgeon with his team put Turner together by using prosthetics and cloning. “Turner represents the most physical breakdown of the opposition between man and machine” (Naidoo 97). He is hired by Conroy to find Christopher Mitchell and bring him to Hosaka. Conroy provides Turner with Christopher Mitchell’s dossier to know him. Turner and the members of a team called Site Team are supposed to control Mitchell’s jet through a biosoft, but there is an explosion before they can get Christopher Mitchell. Therefore, Turner finds Mitchell’s daughter, Angela, instead of Christopher. Angela, also known as Angie, explains everything about his father and herself to Turner. She tells him the members of Hosaka are after her because of her dreams. Then Turner decides to protect Angie, and he brings her to his brother’s, Rudy’s House. Rudy scans Angie and finds a biochip in her head. The biochip has been put in her head by her father in order to enable her to access cyberspace directly. Then, Turner and Angie go to the Sprawl. On their way, sometimes Angie jacks in cyberspace through the biochip and talks different languages. Then, they go to Jammer’s club.In view of the preceding, use of CMC in classrooms as other studies mentioned can be so effective (James 2013). Technological advances in recent years demonstrate that the digital medium has become more and more popular in developing oral skills (e.g., Abuseileek, 2007; Vinther, 2011; Jauregi et al., 2012).
مطلب دیگر :