سنتز نانو ساختارهای آلومینیوم فسفات و کلسیم فسفات به روش سولوترمال و با بهره گرفتن از فسفر تری کلرید ...

۳- بحث و نتیجه ­گیری ۵۸
۳-۱- شناسایی نانوساختارهای آلومینیوم فسفات و کلسیم فسفات سنتز شده از فسفر تری کلرید.۵۹
۳-۱-۱- شناسایی نانوساختارهای آلومینیوم فسفات. ۵۹
۳-۱-۲- شناسایی نانوساختارهای کلسیم فسفات ۶۴
۳-۲- شناسایی نانوساختارهای کلسیم فسفات سنتز شده از آلکیل و آریل فسفات­ها۶۸
۳-۲-۱- شناسایی نانوساختارهای کلسیم فسفات سنتز شده از تری متیل فسفات.۶۸
۳-۲-۲- شناسایی نانوساختارهای کلسیم فسفات سنتز شده از تری بوتیل فسفات.۷۶
۳-۲-۳- شناسایی نانوساختارهای کلسیم فسفات سنتز شده از تریس(۲‐اتیل­هگزیل)فسفات۷۷
۳-۲-۴- شناسایی نانوساختارهای کلسیم فسفات سنتز شده از تری فنیل فسفات۷۹
۳-۳- شناسایی نانوساختارهای آلومینیوم فسفات سنتز شده از آلکیل و آریل فسفات­ها.۸۰
۳-۳-۱- شناسایی نانوساختارهای آلومینیوم فسفات سنتز شده از تری متیل فسفات.۸۰
۳-۳-۲- شناسایی نانوساختارهای آلومینیوم فسفات سنتز شده از تری بوتیل فسفات.۸۴
۳-۳-۳- شناسایی نانوساختارهای آلومینیوم فسفات سنتز شده از تریس(۲‐اتیل­هگزیل)فسفات.۸۶
۳-۴- نتیجه ­گیری. ۸۸
مراجع ۸۹
چکیده:
در این پژوهش نانو­ساختار­های آلومینیوم فسفات و کلسیم فسفات به روش سولوترمال و با بهره گرفتن از فسفر تری کلرید و یا آلکیل و آریل فسفات­ های، تری متیل فسفات، تری بوتیل فسفات، تریس­(۲‐اتیل­هگزیل)­فسفات و تری فنیل فسفات سنتز شدند. محصولات به دست آمده توسط دستگاه­های FT-IR، پراکندگی اشعه­ی X (XRD)، میکروسکوپ الکترونی روبشی (SEM) و پراکندگی الکترون (EDX) شناسایی شدند. نتایج نشان­ دهنده­ سنتز ساختارهایی با اندازه­ نانو و اشکال متنوع بود که ممکن است کاربردهای متفاوتی را دارا باشند.
۱- مقدمه
۱-۱- نانوفناوری
نانو فناوری دانش و فنی است که اخیراً توجه زیادی را به خود معطوف کرده است. این فناوری که یک رویکرد جدید در تمامی رشته­هاست، توانایی تولید مواد، ابزار و سیستم­های نوین را با دست­کاری در سطوح اتمی و مولکولی دارد. امروزه حوزه­ کاربردی این فناوری به تمامی علوم کشیده شده و محبوبیت بین­رشته­ای یافته است؛ به طوری که گستره­ی کاربردی این فناوری در علوم پزشکی، فناوری زیستی، مواد، فیزیک، مکانیک، برق، الکترونیک و شیمی به حدی است که می­توان از آن به عنوان یکی از انقلاب­های بزرگ علمی دنیا ن
ام
برد. این فناوری، روشی نو برای حل مشکلات و پاسخگویی به بسیاری از سوالات مطرح در علوم مختلف ارائه می­ کند که تا کنون، بشر موفق به رفع و یا پاسخ دادن به آن­ها نشده است.
رفتار­های جدیدی که در مقیاس نانو مشاهده می‌­گردند، لزوماً بر­اساس رفتار­های مشاهده شده در ابعاد بزرگ­‌تر قابل پیش­‌بینی نیستند. تغییرات مهم رفتاری که عمدتاً ناشی از اثرات کوانتومی کاهش ابعاد هستند، به ‌علت نزدیکی و قابل مقایسه بودن اندازه­ ذرات یا ریزساختار­ها، با مقیاس طولی میانگین پدیده­‌های فیزیکی و شیمیایی، رخ می­‌دهد. خصوصیات موجی­شکل الکترون­‌ها (مکانیک کوانتومی) در درون مواد و اتم­ها، توسط تغییرات مواد در مقیاس نانو­متری تحت­‌تأثیر قرار می­‌گیرد. با ایجاد ساختار­های نانو­متری، کنترل خصوصیات اساسی مواد، مانند دمای ذوب، رفتار مغناطیسی، ظرفیت شارژ و حتی رنگ آن­ها بدون تغییر ترکیب شیمیایی مواد، ممکن خواهد بود[۱].
۲-۱- تاریخچه نانوفناوری
استفاده از نانوفناوری توسط انسان، برخلاف تصور عمومی، دارای سابقه­ی تاریخی طولانی می­باشد. در این رابطه شواهدی مبنی بر نانوساختاری بودن رنگ آبی به کار برده شده توسط قوم مایا، وجود دارد. پس از آن رومی­ها از این مواد در ساخت جام­هایی با رنگ­های زنده استفاده کردند، به این صورت که آن­ها از ذرات طلا برای رنگ آمیزی این جام­ها بهره می­گرفتند. نمونه ­ای از این جام­ها که برای اولین بار کشف شد، جام لیکورگوس[۱] می­باشد؛ که متعلق به قرن چهارم قبل از میلاد بوده و دارای ذرات نانومتری طلا و نقره است که در هنگام قرار گرفتن در نورهای مختلف رنگ­های گوناگونی را از خود نشان می­دهد. بعدها در قرون وسطی از این روش برای ساخت شیشه کلیساها استفاده می­کردند.
تحقیقات اولیه بر روی نانوذرات به سال ۱۸۳۱ برمی­گردد، وقتی که مایکل فارادی[۲] روی کلوئید قرمزرنگ طلا کار می­کرد و اعلام کرد که رنگ کلوئید مزبور، به اندزه ذرات فلزی بستگی دارد. شاید بتوان بزرگترین تحول در تاریخ نانوفناوری را سخنرانی فیزیکدان بزرگ، ریچارد فاینمن[۳]، درکنفرانس انجمن فیزیک آمریکا در سال ۱۹۵۹ دانست. در این کنفرانس، وی با ارائه مقاله­ای به نام “در آن پایین فضاهای خالی زیادی وجود دارد”[۴]؛ درباره دستکاری مواد در ابعاد اتمی صحبت نمود. این مقاله امروزه به عنوان سرلوحه­ی انجمن نانوفناوری درآمده است. کمی بعد از آن در سال ۱۹۷۴ ناریو تانیگوچی[۵]، یک محقق در دانشگاه توکیوی ژاپن، هنگام کار تحقیقاتی بر روی مواد در ابعاد نانومتری، از عبارت نانوفناوری استفاده کرد. امروزه مهندسی نانو به سرعت در حال گسترش است و امکان اداره­ی قابلیت­های مکانیکی کاتالیزوری، الکتریکی، مغناطیسی، نوری و الکترونیکی را فراهم می­ کند[۲].
۳-۱- اهمیت نانو تکنولوژی
شاید این ﺳﺆال در ذهن پدید آید که چه چیزی در مقیاس نانو­متری وجود دارد که یک تکنولوژی بر پایه آن بنا نهاده­شده­است. آن­چه باعث ظهور نانو­تکنولوژی شده، نسبت سطح به حجم بالای نانو­مواد است. این موضوع یکی از مهم­ترین خصوصیات مواد تولید شده در مقیاس نانو می­باشد. در مقیاس نانو، اشیاء شروع به تغییر رفتار می­ کنند و رفتار سطوح بر رفتار توده­ای ماده غلبه می­ کند. در این مقیاس برخی روابط فیزیکی که برای مواد معمولی کاربرد دارند، نقض می­شوند؛ برای مثال، یک سیم یا اجزای یک مدار در مقیاس نانو لزوماً از قانون اهم پیروی نمی­ کنند. قانون اهم، به جریان، ولتاژ و مقاومت بستگی دارد، اما در مقیاس نانو وقتی عرض سیم فقط به اندازه یک یا چند اتم باشد، الکترون­ها لزوماً باید در صف و به ترتیب و یک به یک از سیم رد شوند، بنابراین ممکن است قانون اهم در این مقیاس تا حدودی نقض شود. در حقیقت در این مقیاس، قوانین فیزیک کوانتوم وارد صحنه می­شوند و امکان کنترل خواص ذاتی ماده بدون تغییر در ترکیب شیمیایی ماده وجود خواهد داشت[۳].
۴-۱- نانومواد
نانو­مواد دروازه­ی ورود به دنیای نانو، و اولین گام برای رسیدن به اهداف بعدی نانو­تکنولوژی می­باشند و بدون توسعه­ی مواد جدید نانو­متری، ورود به عرصه­ نانو­تکنولوژی غیرممکن خواهد بود. طبق یک تعریف، نانو­مواد، موادی هستند که حداقل یکی از ابعاد آن­ها کوچک­تر از ١٠٠ نانومتر باشد در حالت کلی بنابر دلایل زیر خواص نانو­مواد به ابعاد­شان وابسته اند:
– نسبت سطح به حجم بالا
– تغییر در ساختار کریستالی
– کاهش نقص­های شبکه[۴].
۵-۱- تقسیم ­بندی نانو­مواد


نانو­مواد را می­توان برحسب ابعاد آن­ها به صورت زیر تقسیم ­بندی نمود:
الف- نانو­مواد صفر­بعدی[۱](۰D)
نانو­موادی هستند که هر سه بعد آن­ها کمتر از ١٠٠ نانو­متر می­باشد، و شامل نانو­پودرها[۲] و نانو­ذرات[۳] می­شوند. اگر نانو­مواد ص
فر­
بعدی، نیمه­هادی باشند، به آن­ها نقطه کوانتومی[۴] می­گویند.
ب- نانو­مواد یک ­بعدی(۱D)
نانو­موادی هستند که دو بعد آن­ها زیر ١٠٠ نانو­متر بوده و در بعد دیگر بیش از ۱۰۰ نانو­متر می­باشند. برخی از نانو­مواد
یک­بعدی عبارتند از: نانو­لوله­ ها[۵]، نانو­سیم­ها[۶]، نانو­میله­ها[۷]، نانو­تسمه­ها[۸]، نانو­نوار­ها[۹]، نانو­کابل­ها[۱۰] و نانو­فنر­ها[۱۱].
ج- نانو­مواد دو­بعدی(۲D)
نانو­موادی هستند که فقط یک بعد آن­ها زیر ١٠٠ نانومتر بوده و دو بعد دیگرشان بیش از ١٠٠ نانومتر می­باشد. مانند نانولایه­ها[۱۲] و نانو­حلقه­ها[۱۳]
د- نانو­مواد سه­ بعدی(۳D)

مطلب دیگر :

خرید پایان نامه : استقلال در کار - خوشفکری - مرجع ایده ها و آموزش های علمی


نانو­ساختار­هایی هستند که اجزاء آن­ها نانو­مواد صفر، یک، و یا دو­بعدی می­باشند. مثل؛   نانو­کامپوزیت­ها، مواد نانو­کریستالی و قطعاتی که نانو­ذرات در آن­ها پراکنده شده ­اند[۵].
۶-۱- نانو­مواد و انواع روش­های تولید آن
باید خاطر­نشان کرد که روش­های ساخت مواد نانو بسیار گسترده می­باشد، اما به طور کلی فرایند­های مختلفی که برای تولید مواد نانو ارائه شده­ اند دو رویکرد عمده را تعقیب می­ کنند که رویکرد از بالا به پایین و رویکرد از پایین به بالا می­باشد و سایر روش­ها به صورت زیر­مجموعه ­هایی از دو رویکرد ذکر شده در­نظر­گرفته می­شوند.
۱-۶-۱- روش بالا به پایین
در رویکرد بالا به پایین برای تولید محصول، یک ماده توده­ای را شکل­دهی[۱] و اصلاح می­ کنند، به عبارت دیگر، اگر اندازه­ یک ماده­ی توده­ای به طور متناوب کاهش داده شود تا به یک ماده با ابعاد نانو­متری برسد، از رویکرد بالا به پایین استفاده­شده­است. این کار اغلب، ولی نه همیشه، شامل حذف بعضی از مواد به شکل ضایعات است، مانند ماشین­کاری یک بخش فلزی از یک موتور. در ادامه نمونه­های مختلف روش بالا به پایین معرفی می­گردد[۶,۱]:
الف- لیتوگرافی
الف-۱- لیتوگرافی مستقیم (بدون ماسک)
الف-۲- لیتوگرافی پروب پیمایشی
الف-۳- لیتوگرافی نرم
الف-۴- لیتوگرافی غیر مستقیم (مبتنی بر ماسک)
ب- فرآوری مکانیکی
ب-۱- تغییر شکل­دهی پلاستیکی شدید[۲]
ب-۲- اختلاط شدید
ب-۳- فشرده­سازی پودر
ب-۴- آسیاب­های پرانرژی
ج- فرآوری حرارتی
ج-۱- روش زینتر[۳]
ج-۲- روش آنیلینگ[۴] (متبلور­سازی مواد آمورف)
د- ریسندگی
د-۱- ریسندگی الکتریکی
د-۲- ریسندگی مذاب
[۱] Deformation
[2] Serve Plastic Deformation Processing
[3] Sinter
[4]Annealing
[1] Dimension
[2] Nanopowders
[3] Nanoparticles
[4] Quantum dot
[5] Nanotubes
[6] Nanowires
[7] Nanorods
[8] Nanobelts
[9] Nanoribbons
[10] Nanocables
[11] Nanosprings
[12] Nanolayers
[13] Nanorings
[1] Lycurgus
[2] Michael Faraday
[3] Richard Feynman
[4] “There are plenty of rooms at bottom.”
[۵] Norio Taniguchi
تعداد صفحه : ۱۰۳
قیمت : ۱۴۷۰۰ تومان

دانشکده شیمی پایان نامه جهت اخذ درجه کارشناسی ارشد در رشته شیمی آلی موضوع:

مکانیسم واکنش به این صورت می­باشد که ابتدا آمین نوع اول به الدهید یا کتون اضافه می شود و حد واسط کربینول[۱] I را به­وجود می آورد سپس با از دست دادن آب ایمین مربوطه حاصل می­شود. در این واکنش از کاتالیزور اسیدی استفاده می­شود که مکانیسم تهیه ایمین در مجاورت کاتالیزور اسیدی در شمای ۱-۲ آورده شده است.
برای مثال از واکنش استو­فنون با اتیل­آمین، کتیمین مربوطه حاصل می­شود.
از واکنش بین بنزالدهید و متیل آمین، الدیمین مربوطه به­دست آمده است.
واکنش­های تهیه شیف باز در بیو­شیمی اهمیت زیادی دارد. به عنوان مثال ترکیب PLP که از مشتقات الدهیدی ویتامین B6 می باشد از طریق گروه الدهیدی خود می تواند به گروه آمینو در آنزیم­ها متصل شود و شیف باز تشکیل دهد. در ادامه این شیف باز، از آنزیم به نیتروژن آمینواسیدها منتقل می­شود (شمای ۱-۶ )[۲۰].
۲-۳-۱-۱- سنتز ایمین­ها با بهره گرفتن از ترکیبات آلی­فلزی
۱-۲-۳-۱-۱- واکنش نیتریل­ها با معرف گرینیارد
>در این واکنش یک آریل یا آلکیل گرینیارد به آریل سیانید اضافه می­شود که ابتدا یک حد واسط آلی­فلزی به­وجود می­آید سپس با هیدرولیز کنترل شده این حدواسط، کتیمین با بازده ۷۰% حاصل می­شود.
هیدرولیز شدید این حد­واسط در نهایت به کتون منجر می­شود بنابراین در مرحله آخر از آمونیاک استفاده می­شود (شمای ۱-۷)[۲۱].
۲-۲-۳-۱-۱- و
اکنش C-کلرو-N-بنزیلیدن آنیلین­ها با معرف گرینیارد

در C-کلرو-N-بنزیلیدن آنیلین­ها، اتم کلر می ­تواند با گروه­های آلکیل یا آریل معرف گرینیارد با بازده بسیار خوبی جایگزین شود و ایمین مربوطه حاصل شود (شمای ۱-۸ )[۲۲ و ۲۳].
۳-۲-۳-۱-۱- واکنش اکسیم ها با معرف گرینیارد


اکسیم­های تهیه شده از الدهید­های آروماتیک با معرف گرینیارد واکنش می­ دهند که محصول عمده این واکنش بنزیل آمین است و محصول جانبی واکنش، یک کتیمین می باشد (شمای ۱-۹)[۲۴].
۳-۳-۱-۱- سنتز ایمین ها از طریق هیدروژن­زدایی از آمین ها
واکنش هیدروژن زدایی از آمین ها اولین بار توسط ریتر[۱] انجام شد. برای مثال ایزوبورنیل آنیلین با سولفور در دمای ۲۲۰ درجه سانتی­گراد هیدروژن­ زدایی می­شود و آنیل مربوطه با بازده ۸۹% حاصل می­شود (شمای ۱-۱۰)[۲۵].
۴-۳-۱-۱- سنتز ایمین­ها با بهره گرفتن از واکنش بین فنول­ها یا فنول­اتر­ها و نیتریل­ها
فنول­ها و اتر­های آنها با آریل یا آلکیل سیانید­ها در اتر و در مجاورت کاتالیزور هیدروژن کلراید واکنش می­دهد و کتیمین با بازده بالا تولید می­شود (شمای ۱-۱۱) [۲۶ – ۲۸].
۵-۳-۱-۱- سنتز ایمین­ها با بهره گرفتن از واکنش­های کاهشی
۱-۵-۳-۱-۱- سنتز ایمین­ها از کاهش اکسیم­ها
اکسیم­های آلیفاتیک در واکنش با هیدروژن در مجاورت کاتالیزور نیکل و تحت فشارکاهش می­یابد و کتیمین مربوطه با بازده ۳۰% حاصل می­شود (شمای ۱-۱۲) [۲۹].

مطلب دیگر :

پایان نامه های ارشد حقوق


۲-۵-۳-۱-۱- سنتز ایمین­ها از کاهش نیتریل­ها
فنیل سیانید در مجاورت لیتیم آلومینیوم هیدرید و حلال تترا هیدروفوران به آمین کاهش می­یابد. سپس این آمین به ماده اولیه کاهش نیافته (فنیل سیانید) اضافه می­شود و ایمین مربوطه به عنوان محصول جانبی ایجاد می­شود (شمای ۱-۱۳) [۳۰].
۶-۳-۱-۱- سنتز ایمین از طریق واکنش آمید­های فلزی با کتون­های آروماتیک
آمید فلزی حاصل از آمین نوع اول با کتون­های آروماتیک واکنش می­دهد و ایمین مورد نظر تولید می­شود (شمای ۱-۱۴) [۳۱].
۷-۳-۱-۱- سنتز ایمین­ها با بهره گرفتن از واکنش کتال­ها و آمین­های نوع اول
دی­اتیل­ کتال­ها با آلکیل یا آریل آمین­ها واکنش می­ دهند و ایمین مورد نظر حاصل می­شود (شمای ۱-۱۵) [۳۲ و ۳۳].
۸-۳-۱-۱- سنتز C- سیانو ایمین­ها با بهره گرفتن از نیترون­ها
نیترون­ها با پتاسیم سیانید واکنش می­ دهند و C- سیانو ایمین­ها تولید می­شود (شمای ۱-۱۶) [۳۴].
۹-۳-۱-۱- سنتز ایمین­ها با بهره گرفتن از ایزوسیانات و الدهید
فنیل ایزوسیانات با ۴-­دی­متیل آمینو بنزالدهید واکنش می­دهد و ایمین مربوطه حاصل می­شود (شمای ۱-۱۷) [۳۵].
۱۰-۳-۱-۱- سنتز ایمین­ها با بهره گرفتن از ایلید­های فسفر و نیتروسو بنزن
آلکیلیدن تری­فنیل فسفران یا ایلید فسفر با نیتروسو بنزن واکنش می­دهد و ایمین از نوع آنیل سنتز می­شود (شمای ۱-۱۸) [۳۶].
[۱] Ritter
[1] Carbinol
[1] Hugo schiff
[1] Aldimine
[2] Ketimine
[3] Anil
[4] Schiff base
تعداد صفحه : ۱۷۶
قیمت : ۱۴۷۰۰ تومان

گرایش: شیمی فیزیک عنوان: ساخت و ارزیابی کاتالیزور وانادیل پیرو فسفات حاوی کبالت (Co-VPO) و کاربرد آن ...

3-6-6- بررسی دما در اکسایش بنزیل الکل در حضور کاتالیزور ۳%) Co/VPO (I)
فصل چهارم – نتایج و بحث
۴-۱- تعیین کاراکتر و خصوصیات ساختاری کاتالیزورها ۶۵
۴-۱-۱- مطالعه پراش اشعه X  (XRD).
 ۴-۱-۲- مطالعه ی تکنیک SEM و تعیین مورفولوژی و اندازه ذرات.۷۰
۴-۱-۳- شناسایی کاتالیزور از طریق ترموگراویمتری (TGA / DSC / DTA ).71
4-2- تست راکتوری کاتالیزورها. ۷۲
۴-۲-۱- بررسی واکنش اکسایش بنزیل الکل در حضور کاتالیزورهای  VPOو Co / VPO  تهیه شده از روش   I و  II
4-2-1-1- بررسی اثر نوع الکل دراکسیداسیون الکل ها توسط کاتالیزور I) )  (۳%) Co/VPO
4-2-1-2- بررسی اثر حلال دراکسیداسیون بنزیل الکل توسط کاتالیزورI) )  (۳%) Co/VPO
4-2-1-3- بررسی اثر مقدار کاتالیزور I) ) Co/VPO (3%) در اکسیداسیون بنزیل الکل.۷۶
۴-۲-۱-۴- بررسی اثر خیساندن و قابلیت کاربرد مجدد کاتالیزور  I) )  (۳%) Co/VPO
4-2-1-5- بررسی اثر تغییر نسبت اکسید کننده به ماده اولیه در واکنش اکسیداسیون بنزیل الکل توسط  کاتالیزور  I))  (۳%) Co/VPO
4-2-1-6- بررسی اثر دما دراکسیداسیون بنزیل الکل توسط  کاتالیزور I) ) (3%) Co/VPO
4-3- نتیجه گیری. ۸۱
مراجع۸۲
چکیده:
در این پایان نامه ، کاتالیزور وانادیل پیرو فسفات حاوی درصدهای مختلف وزنی کبالت با بهره گرفتن از روش تلقیح Impregnation)) ساخته شده و کاتالیزور بهینه VOHPO4-0.5H2O شامل ۳ درصد وزنی از کبالت شناسایی شد. ساختار کاتالیزور از طریق تکنیک هایی همچونXRD ،SEM  و   TG/DTA/DSC شناسایی شده است. سپس اکسایش بنزیل الکل در مجاور اکسنده ی ترشیو بوتیل هیدرو پراکساید (TBHP) در حلال استو نیتریل مورد مطالعه قرار گرفت. برای آنالیز محصولات شیمیایی، از دستگاه کروماتوگرافی گازی مجهز به آشکار ساز یونش شعله ای (FID) استفاده می شود.
در این سیستم کاتالیزوری، اثر مقدار کاتالیزور، اثر دما، اثر نوع الکل، اثر خیساندن، اثر قابلیت تکرار پذیری و کاربرد مجدد، اثر نسبت مولی اکسید کننده به ماده اولیه مورد بررسی قرار گرفت و در هر مورد مقادیر مناسب و بهینه شناسایی شد. در این واکنش ها، ماده اولیه (بنزیل الکل) با بهره گرفتن از اکسنده (ترشیو بوتیل هیدرو پراکساید) اکسایش پیدا کرده و محصول اصلی واکنش که بنز آلدهید می باشد را تولید می کند، علاوه بر آن محصولاتی همچون بنزوئیک اسید و بنزیل بنزوات، در مقادیر کم به عنوان محصولات فرعی تشکیل شدند.
فصل اول: مروری بر کاتالیزور های ناهمگن
۱-۱- مفهوم کاتالیزور
کاتالیزور ماده ای است که سرعت یک واکنش شیمیایی را افزایش دهد بدون آن که در فرآورده های نهایی ظاهر شود. عبارت کاتالیزور از دو لغت یونانی تشکیل می گردد. پیشوند «کاتا» به معنی پایین و فعل «لیزین» به معنی پخش یا شکست یا بیدار کردن میل ترکیبی خفته می باشد. یک کاتالیزور نیروی طبیعی را که مانع انجام واکنش می گردد از بین می برد[۱].
هنگامی که کاتالیزور به صورت محلول در محیط واکنش است کاتالیزور همگن و وقتی که کاتالیزور فازی مجزا از فاز واکنش تشکیل می دهد، کاتالیزور ناهمگن نامیده می شود. در اکثر موارد کاتالیزور ناهمگن، کاتالیزور جامدی است که از تماس با آن واکنش گر های گازی یا مایع متحول می شوند و در نتیجه بیشتر اوقات عبارت کاتالیزور تماسی برای نامیدن کاتالیزور ناهمگن به کار می رود[۲].
برای کامل نمودن تعریف کاتالیزور، لازم است نکات زیر به آن اضافه گردد:
۱) کاتالیزور می تواند یک ماده جامد، مایع، گاز و یا یک مجموعه پیچیده باشد.
۲) کاتالیزور عمل سرعت واکنش را به عهده دارد، همچنین می تواند نقش جهت  دهندگی داشته باشد.
۳) کاتالیزور دارای عمر مشخصی است و در اثر انجام واکنش به تدریج فعالیت و گزینش پذیری خود را از دست می دهد.
۴) هیچ رابطه­ استوکیومتری بین مقدار ماده ای که تبدیل می شود و مقدار کاتالیزوری که فعالیت خود را از دست می دهد وجود ندارد.
۵) یک واکنش که از نظر ترمودینامیکی امکان پذیر نمی باشد، در مجاورت کاتالیزور نیز امکان پذیر نخواهد بود. زیرا کاتالیزور در ترمودینامیک واکنش دخالتی ندارد.
۲-۱- تاریخچه کاتالیزور
قدمت استفاده از کاتالیزور به گذشته های دور بر می گردد. به عنوان مثال می توان از مصرف آن در تولید سرکه با واکنش تخمیر و استفاده از آن د
ر تهیه صابون از چربی و روغن نام برد. در اوایل قرن نوزدهم، اکتشافات بسیار مهمی در شیمی و فیزی
ک ات
فاق افتاد و مشاهده شد تعدادی از واکنش های شیمیایی تحت تأثیر مقادیر بسیار کمی از موادی که در واکنش مصرف نمی گردند قرار می گیرند[۳]. گزارشاتی از نیمه

 اول قرن هجدهم وجود دارد که درباره آنچه که ما امروز فعل و انفعال کاتالیستی می نامیم، صحبت نموده است. در سال ۱۸۰۶، کلمنت[۱] نظریه ای را در مورد چگونگی دخالت اکسیدهای نیتروژن در تشکیل اسید سولفوریک در اتاقک های سربی و افزایش سرعت آن ارائه نمود. به طوری که مونوکسید نیتروژن آزاد شده دوباره می تواند این چرخه را تکرار کند. چند سال بعد در سال ۱۸۱۴، کیرشهف[۲] عمل هیدرولیز نشاسته را در مجاورت اسید و تبدیل آن به گلوکز را مورد مطالعه قرار داد و چگونگی انجام فعل و انفعالات را بیان نمود و نقش اسید در تولید گلوکز را شرح داد، بنابراین مفهوم کاتالیزور پا به عرصه وجود گذاشت. دومین واکنش کاتالیزوری گزارش شده در سال ۱۸۱۷ توسط هامفری داوی[۳] صورت تحقق به خود گرفت. این محقق کشف نمود که با وارد کردن یک قطعه سیم پلاتین در مخلوطی از هوا و گاز ذغال، پلاتین گرم می شود و این رویداد را بدین ترتیب توجیه نمود که در این آزمایش فعل و انفعال اکسیداسیون اتفاق می افتد. ولی در ماهیت شیمیایی سیم پلاتین تغییری حاصل نشده است. این کار توسط ادموند داوی[۴] دنبال شد. او در سال ۱۸۲۰ به این نتیجه رسید که در صورت استفاده از ذرات پلاتین (به جای سیم) این واکنش حتی در دمای اتاق نیز انجام می پذیرد. در سال ۱۸۲۲، دوبرینره[۵] با انجام آزمایشات مشابه نتیجه گرفت که در حضور پلاتین بخارات اتانول با اکسیژن وارد عمل شده و اسیداستیک تولید می گردد . در سال ۱۸۲۴، هنری[۶] نشان داد که در فعل و انفعال هیدروژن و اکسیژن، در حضور پلاتین ترکیبی مثل اتیلن می تواند به عنوان بازدارنده و خنثی کننده نقش پلاتین عمل نموده و از این فعل و انفعال جلوگیری کند. در سال ۱۸۲۵ برای اولین بار فارادی[۷] که طبیعت جذب در سطوح را مطالعه می کرد، نظریه جذب واکنش دهنده قبل از انجام واکنش در سطوح کاتالیزور ها را عنوان کرد. در سال ۱۸۳۱ پرگرین فیلیپس[۸] نقش پلاتین را در اکسیداسیون SO2  به SO3 آشکار ساخت و از آن

مطلب دیگر :

بایگانی‌های پایان نامه حقوق - خوشفکری - مرجع ایده ها و آموزش های علمی

 پس این مسئله اساس ساخت اسیدسولفوریک شد و در همین سال مسموم شدن کاتالیزور پلاتین به وسیله هیدروژن سولفوره را کشف نمود. در سال ۱۸۸۸ لودونیگ موند[۹] تبدیل هیدورکربن ها در فاز بخار و در مجاورت کاتالیزور نیکل را که منجر به تولید هیدروژن و مونوکسیدکربن می شود، کشف نمود. در این سال جیمز دوار[۱۰] به این موضوع پی برد که در دمای اتاق مقدار زیادی اکسیژن روی ذغال جذب و با بالا بردن دما به آسانی دفع می شود.

این مشاهدات را می توان مبدأ پیدایش کارهای مربوط به جذب شیمیایی و فیزیکی دانست. در سال اول قرن بیستم ساباتیه و ایپاتیف[۱۱] تحقیقات جدیدی را در زمینه ی واکنش های شیمی آلی ابداع نمودند. هابر و میتاش[۱۲] در اولین دهه قرن بیستم موفق به سنتزآمونیاک از هیدروژناسیون کاتالیزوری ازت شدند.
در بیشتر منابع به کارگیری واژه کاتالیزور را به برزیلیوس[۱۳] در سال ۱۸۳۵ نسبت می دهند. همچنین بعد از برزیلیوس، استوالد، در سال ۱۸۹۵ کاتالیزور را ماده ای دانست که بدون اینکه انرژی آزاد گیپس استاندارد واکنش (∆Go) را تغییر دهد، سرعت واکنش شیمیایی را تغییر می دهد. در سال های بعد واژ­ه­ی کاتالیزور و استفاده از آن به سرعت رشد یافت و در صنعت نیز مورد استفاده بسیاری پیدا کرد.
۳-۱- دسته بندی کاتالیزور ها
کلاً کاتالیزورها از نظر نحوه ی عمل بر روی واکنش ها به دو دسته تقسیم می شوند. دسته اول کاتالیزور مثبت[۱]، به ماده یا مخلوطی از مواد اطلاق می شود که با حضورش در یک سیستم شیمیایی سرعت فعل و انفعال را افزایش می دهد ولی در محصول نهایی ظاهر نمی شود. اساساً خاصیت یک کاتالیزور این است که در حالیکه به تعادل رسیدن یک فعل و انفعال را تسریع می کند، قادر نیست شرایط تعادل را تغییر دهد. در ضمن در مقایسه با واکنش شیمیایی بدون کاتالیزور فعل و انفعالات کاتالیزوری در دمای کمتری انجام می گیرد[۵و۴].
کاتالیزورهای منفی[۲]، به ماده یا مخلوطی از مواد گفته می شود که با حضورش در یک سیستم شیمیایی سرعت فعل و انفعال را کاهش می دهد. این کاتالیزورها در مقایسه با کاتالیزورهای مثبت چندان مورد مطالعه قرار نگرفته اند ولی در هر صورت در واکنش ها از اهمیت خاصی برخوردارند. اهمیت صنعتی کاتالیزور منفی در مسائلی مثل اکسیداسیون روغن ها، چربی ها، ترکیبات ضد ضربه برای سوخت های موتور و جلوگیری از خوردگی فلزات به خوبی روشن است.
علاوه بر دسته بندی فوق کاتالیزورها را با توجه به فازی که در آن فعل و انفعالات انجام می گیرد به سه دسته کلی تقسیم می شوند:
الف) کاتالیزور آنزیمی
<spa
n style=”colo
r: #000000;”>ب) کاتالیزور همگن [۳]
ج) کاتالیزور ناهمگن[۴]
۴- Positive
1- Negative
2- Homogeneous
3- Heterogeneous
1- Celement
2- Kirchhof
3- Hamfry Davy
1- Edmond Davy
2- Dobreiner
4- Faraday
5- Pergreen Philips
6- Ludwing mond
7- James Dewar
1- Sabatiad and Tpatief
2- Habber and Mitasch
3- Jakob Berzelios
تعداد صفحه : ۱۰۱
قیمت : ۱۴۷۰۰ تومان

پایان نامه کارشناسی ارشد در شیمی تجزیه عنوان: اندازه گیری اسپکتروفوتومتریک مقادیر بسیار ناچیز پالادیوم در نمونه ...

فصل سوم. ١٨
بخش تجربی. ١٨
٣-١- مقدمه ١۹
٣-٢- مواد و تجهیزات. ١۹
٣-٢-١- مواد شیمیایی ١۹
٣-٢-٢- تجهیزات و وسایل. ١۹
٣-٣- تهیه محلولهای استاندارد. ٢٠
٣-۴- نحوه تشکیل کمپلکس پالادیوم-رودانین و استخراج آن.٢٠
٣-۵- بهینه سازی شرایط استخراج ٢٢
٣-۵-١- جنس حلال استخراجی ٢٢
٣-۵-٢- حجم حلال استخراجی. ٢٣
٣-۵-٣- نوع حلال پخشی ٢۴
٣-۵-۴- حجم حلال پخشی. ٢۵
٣-۵-۵- اثرpH. ٢۶
٣-۵-۶- تعیین غلظت بهینه سورفاکتانت ٢٧
٣-۵-٧- تعیین غلظت بهینه لیگاند. ٢٨
٣-۶- ارقام شایستگی روش. ٣۰
٣-۶-١- منحنی کالیبراسیون. ٣۰
٣-۶-٢- حد تشخیص. ٣١
٣-۶-٣- فاکتور تغلیظ ٣٢
٣-٧- تجزیه نمونه های حقیقی ٣٢
٣-٧-١- اندازه گیری پالادیوم در نمونه آب شهر. ٣٢
٣-٧-٢- آماده سازی نمونه کاتالیزور اتومبیل. ٣٣
٣-٧-٣- اندازه گیری پالادیوم در کاتالیزور اتومبیل. ٣۴
٣-٨- مقایسه روش پیشنهادی با سایر روش های اندازه گیری پالادیوم٣۴
۳-۹- نتیجه گیری ٣۵
چکیده:
در این کار تحقیقاتی، روش ساده و آسان یک مرحله ای میکرو استخراج مایع مایع پخشی در سرنگ، برای تغلیظ مقادیر کم پالادیوم در نمونه های آب، به عنوان یک مرحله آماده سازی، قبل از اندازه گیری با اسپکتروفوتومتری ماوراء بنفش – مرئی  بکار گرفته شد. در روش ارائه شده، به عنوان واحد استخراج کننده، فقط از یک سرنگ پلاستیکی معمولی استفاده شده است. دراین روش، مخلوط رودانین به عنوان عامل کمپلکس دهنده، بنزیل الکل به عنوان حلال استخراجی و اتانول به عنوان حلال پخشی، به سرعت توسط سرنگ به ۵ میلی لیتر نمونه پالادیوم که در یک سرنگ پلاستیکی ١۰ میلی لیتری قرار داشت، تزریق گردید. اثر پارامترهای موثر بر استخراج کمپلکس

 پالادیوم –رودانین، مانند نوع و حجم حلال های پخشی و استخراجی و pH محلول آبی مورد بررسی قرار گرفته و بهینه شدند. تحت شرایط بهینه، برای روش پیشنهادی محدوده خطی منحنی کالیبراسیون بین ٢٠٠٠-١٢۰ میکرو گرم بر لیتر پالادیوم و مقدار انحراف استاندارد نسبی ٨١/۵ درصد به دست آمد. حد تشخیص روش ٠٧۵/٠ میکروگرم بر لیتر محاسبه شد. این روش به طرز موفقیت آمیزی برای تعیین پالادیوم در نمونه های آب بکار رفت.

فصل اول: پالادیوم و روش های تجزیه آن
۱-۱- عنصر پالادیوم
پالادیم عنصری فلزی به رنگ سفید است که در سال١٨٣٠ توسط ویلیام ولاستون دانشمند انگلیسی کشف گردید. این ماده معمولأ همراه کانیهای پلاتین، مس و جیوه یافت می شود. نام  این عنصر از آستروئید پالاس گرفته شده است. پالاس< br />نام یک الهه یونانی است، الهه حکمت و فرزانگی. پالادیم همراه با پلاتین و دیگر فلزات گروه پلاتین در نهش
ته های پلاسر روسیه و آمریکای جنوبی، آمریکای شمالی، اتیوپی و استرالیا یافت می شود. این عنصر همچنین در نهشته های مس – نیکل در آفریقای جنوبی و اونتاریو یافت می شود. پالادیم را میتوان از فلزات گروه پلاتین نیز جدا نمود. آفریقای جنوبی و روسیه، تولید کنندگان بزرگ جهانی فلزات اصلی گروه پلاتین بخصوص پالادیم هستند. در شوروی سابق، پلاتین به عنوان محصول فرعی از استخراج پالادیم و در کانادا، پلاتین به عنوان محصول فرعی از استخراج نیکل، تولید می شود. آفریقای جنوبی تنها کشوری

مطلب دیگر :

دانلود پایان نامه تجارت سیار - دوشنبه سی و یکم تیر ۱۳۹۸

 است که پلاتین را به عنوان ماده اولیه استخراج می کند. اگر در بازار جهانی در عرضه آنها وقفه رخ دهد لازم است که همه کشورهای مصرف کننده حداقل برای مصرف یک سال این ماده ذخیره داشته باشند [۱].

۲-۱- خواص فیزیکی و شیمیایی پالادیوم
همانگونه که ذکر شد، پالادیوم یک فلز سفید – نقره ای متالیک و نرم است که شبیه پلاتین بوده، در مجاورت هوا سیاه نمی‌شود. این فلز با چگالی اندک خود، پایین‌ترین نقطه ذوب را در میان فلزات گروه پلاتین دارد. زمانی که به آن حرارت داده شود، به میزان زیاده کشیده و نرم شده، در دمای سرد سفت و محکم می‌شود. پالادیوم به‌شدت با ترکیبات گوگردی و اسید نیتریک ترکیب شده، به‌آرامی در اسید کلریدریک حل می‌شود. همچنین این فلز در دماهای معمولی با اکسیژن ترکیب نمی‌شود و به طرز غیر معمول و بسیار عجیبی خاصیت جذب هیدروژن را تا ۹۰۰  برابرحجم خود در دمای اتاق داشته است. حالتهای معمولی اکسیداسیون پالادیوم +۲، +۳ و +۴ می‌باشد. اخیرا ترکیبات پالادیوم که در آن، این عنصر اکسیداسیون +۶ دارد هم سنتز شده است[۱].
در جدول ١-١ مطالبی در مورد خواص فیزیکی و شیمیایی پالادیوم آورده شده است [۲].
۳-۱- کاربردهای پالادیوم
از پالادیوم در تجهیزات و سیستم های سوئیچینگ مخابراتی استفاده می‌شود. همچنین این ماده کاتالیزورهای خوبی، مخصوصا درعمل تصفیه نفت محسوب می شود که سرعت هیدروژن‌ دارکردن و هیدروژن‌زدایی را زیاد می‌کند. به کمک یک قشر کاتالیزر پالادیم به دست آوردن هیدروژن بسیار خالص از نفت خام و بنزین طبیعی میسر و ممکن می گردد که این هیدروژن در ساختن اجسام نیمه رسانا و تولید فلزات ضرورت دارد. از دیگر کاربردهای پالادیوم در پیلهای سوختی است که از منابع پاک و تجدید پذیر انرژی محسوب می شود که توسط ترکیب اکسیژن و هیدروژن، برق تولید می کند و محصول جانبی آن تنها آب است. این عنصر در دندانپزشکی، ساعت سازی، جواهرسازی، ساخت ابزار جراحی و اتصالات الکتریکی تلفن های همراه و اتوموبیلها کاربرد دارد. در حال حاضر پالادیوم در مقایسه با پلاتین کاربرد وسیع تری در صنایع خودروسازی داشته و میزان تقاضای این محصول در این صنعت بیشتر می باشد. مصرف پالادیوم از ١٠٠ تن، در سال ١۹۹٠ به ٣۰٠ تن در سال ٢٠٠٠ افزایش یافته است که قسمت عمده آن در کاتالیزور خودروها مصرف می شود. کاربرد اصلی پالادیوم در موتورهای گازوئیلی به عنوان کاتالیست خودرو می باشد که از اینرو یکی از محصولات فلزی پرکابرد در بازارهای امریکای شمالی و آسیا بوده و رشد بازار آن وابستگی بسیار زیادی به این صنعت دارد. آلیاژ آن، در جواهرسازی استفاده می‌شود. طلای سفید، آلیاژی از طلا بوده که با اضافه کردن پالادیوم، رنگ خود را از دست می‌دهد. پالادیوم به‌تدریج در تولید و ساخت جواهرآلات از اهمیت ویژه‌ای برخوردار خواهد شد. رنگ پالادیوم سفید متمایل به خاکستری، سفیدتر از پلاتین است و هرگز تیره نمی‌شود و یا رنگش تغییری پیدا نمی‌کند و آلرژی‌زا نیست. ضمن آنکه ۶/۱۲ درصد سخت‌تر و انعطاف‌پذیرتر می‌باشد. اگرچه سختی آن در مقایسه با پلاتینیوم کمتر است. قابلیت تغییر و وزن سبک آن سبب می‌شود تا بیشتر از پلاتینیوم در ساخت جواهر استفاده شود و هزینه کمتر و سود بیشتری را به‌دنبال داشته باشد. آلیاژ پالادیم با فلزهای دیگر و عمدتا نقره برای ساختن دندان های مصنوعی در دندان پزشکی استفاده می شود[۱و۲].
۴-۱- مشکل تعیین Pd در نمونه های محیطی
تعیین پالادیوم در نمونه های محیطی نشان دهنده یک چالش جدید است. این عنصر همراه با رودیم یک جزء اصلی از کاتالیزور فعال خودرو است که به شدت توسعه یافته است. به عنوان مثال از سایش سطح, این عناصر در محیط زیست منتشر می شوند. تعیین این آلاینده ها در غلظت زیست محیطی آن نیاز به استفاده از تکنیکهای تجزیه ای بسیار حساس مانند اسپکتروسکوپی جرمی همراه با پلاسما می باشد. مشکلات مربوط به تعیین پالادیوم می تواند شامل بازیابی ناقص پس از آماده سازی نمونه, هضم نمونه یا جداسازی ماتریکس و همچنین خطر ابتلا به آلودگی در طی آماده سازی نمونه باشد. به عنوان مثال پالادیوم در مقابله با دیگر عناصر گروه پلاتین به شدت به باقیمانده سیلیکات متصل می شود حتی در محلول اسیدی. بنابراین در نمونه های محیطی باید به طور کامل هضم شوند[۳].
تعداد صفحه : ۵۵
قیمت : ۱۴۷۰۰ تومان